圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。
圆周率不是某个人发明的,而是许多科学家经过无数次的验算所得出来的结果。阿基米德,开创了人类历史上通过理论计算圆周率近似值的先河;祖冲之,进一步计算出了圆周率小数点后七位的结果。现代计算机已将圆周率精确到小数点后31.4万亿位。圆周率将对信息社会产生深远影响。
1、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。
2、中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.
3、南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶)。
4、在西方直到1573才由德国人奥托得到经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。