在数学中,常函数是指不管自变量值如何变化,函数值都不变的函数。当常数不为0时,是偶函数;当常数为0时,既是偶函数,也是奇函数,前提是定义域关于原点对称。
一、奇函数性质
1. 两个奇函数相加所得的和或相减所得的差为奇函数 。
2. 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
3. 两个奇函数相乘所得的积或相除所得的商为偶函数。
4. 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
5. 奇函数在对称区间上的积分为零。
二、奇函数性质
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足 f(x)=f(-x) 如y=x*x;
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称。
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。
2.幂函数导数
6.反三角函数的导数