互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。下面是小编整理的详细内容,一起来看看吧!
质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。
互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;
(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;
(3)两个不同的质数,为互质数;
(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;
(5)任何相邻的两个数互质;
(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。
概念判断法
公约数只有1的两个数叫做互质数。根据互质数的概念可以对一组数是否互质进行判断。如:9和11的公约数只有1,则它们是互质数。
规律判断法
根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。
(1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。
(2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。
(3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。
(4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。
(5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。
(6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。
(7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。
分解判断法
如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。 [5] 如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。