看曲线的弯曲程度,其切线倾斜程度越大,斜率越大。先判断上面提到的角是锐角还是钝角,若是锐角,则越接近90°斜率越大,若是钝角,则越接近90°,斜率越小。做曲线的切线,切线与x轴的正方向(注意是正方向)有个夹角,这个夹角的tan值就是这条切线的斜率。
导数即表示函数在某一点的切线的斜率。例如f'(x)=x^2,在x=4时,f'(x)=8,在x=0时,f'(x)=0,所以在x=0时,f(x)=x^2的切线可看作与x轴平行。
研究某一函数的导数很重要,因为它的几何意义是该函数曲线在这一点上的切线斜率,而斜率直接关系到在某一个区间函数的增减性。
当对于任意x∈(a,b)都有f'(x)>0时,函数f(x)在(a,b)是增函数。
而当对于任意x∈(a,b)都有f'(x)<0时,函数f(x)在(a,b)是减函数。