正负的判断主要基于法向量的取向,一般在封闭体内取外法向,则符号取正。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
方向与向外一样,正号。相反,则负号。
利用高斯公式,求曲面积分,将已知曲面增加一个简单曲面,组成封闭曲面,注意高斯公式的正方向是外侧,体积分减去附加曲面的积分,等于要求的曲面积分,如果方向与向外相反,就差一个符号。
假如所积分的曲面是闭合的曲面,那么方向向里就是负号,向外就是正号。假如所给的曲面不是闭合的,这时你需要作辅助面使其成为闭合的曲面,这时,方向向里为负号,外为正号。用高斯定理进行第二类曲面积分,往往是曲面较为复杂而通过添加简单的曲面,如,平面(尤其是平行于坐标面得平面),就可形成闭合曲面。
而一般情况,还是直接积分比较好。如果辅助面在上侧,那么,法向量向上是正的,如果辅助面在下侧,那么法向量向下才是正的。