一、简单随机抽样的特点和方法
1、简单随机抽样
一般地,设一个总体含有$N$个个体,从中逐个不放回地抽取$n$个个体作为样本$(n\leqslant N)$,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
2、简单随机抽样的特点
(1)它要求被抽取样本的总体个数$N$是有限的。
(2)它是从总体中逐个抽取的。
(3)它是一种不放回抽样。
(4)它是一种等可能抽样(保证了抽样方法的公平性)。
从含有$N$个个体的总体中抽取一个容量为$n$的样本$(n\leqslant N)$,那么每个个体被抽到的可能性都相等,都等于$\frac{n}{N}$。
3、简单随机抽样的方法
(1)抽签法(抓阄法)
一般地,抽签法就是把总体中的$N$个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取$n$次,就得到一个容量为$n$的样本。
(2)随机数法
利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
步骤如下:
第一步:将总体中的个体进行编号(每个号码位数一致)。
第二步:在随机数表中任选一个数作为开始。
第三步:从选定的数开始按一定的方向读下去,方向可以向左、向右、向上、向下等。但选择了方向后就要按此方向读下去,直至样本选取结束。
第四步:获取样本号码:读数时,要一组一组地读取。编号为两位数,则两位一组地读取;编号为三位数,则三位一组地读取。不在编号范围内的号码要剔除,与已读出的号码重复的不算,进而得到整体样本号码。
注:(1)抽签法和随机数表法都是简单随机抽样的方法。当总体中的个体数较少时,制签和搅拌均匀都容易进行,故两种方法可通用。但当总体中的个体数较多时,随机数表法克服了制签难、搅拌均匀难的问题。
(2)用随机数表法时,可以任选一个数字作为开始数,读数的方向是任意的,可以向左、向右、向上、向下等。
二、简单随机抽样的相关例题
某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户。为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名女运动员,要从中选出3人调查学习负担情况,记作②。那么完成上述两项调查应采用的抽样方法是___
A.①用简单随机抽样法,②用分层随机抽样法
B.①用简单随机抽样法,②用简单随机抽祥法
C.①用分层随机抽样法,②用简单随机抽样法
D.①用分层随机抽样法,②用分层随机抽样法
答案:C
解析:对于① ,∵社会购买力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,∴要从中抽一个样本量是100的样本应该用分层随机抽样法;对于②,由于样本量不大,且抽取的人数较少,故采用简单随机抽样法。故选C。