抛物线的定义和方程

文/季长春

一、抛物线的定义和方程

1、抛物线的定义

平面内与一个定点$F$和一条定直线$l$($l$不经过点$F$)距离相等的点的轨迹叫做抛物线,点$F$叫做抛物线的焦点,直线$l$叫做抛物线的准线。

设$M$是抛物线上任意一点,$F$是抛物线的焦点,点$M$到$l$的距离为$d$,由抛物线的定义知,抛物线就是集合$P={ M||MF|=d}$。

注:(1)抛物线定义的实质可归结为“一动三定”:一个动点,设为$M$;一个定点$F$(抛物线的焦点);一条定直线$l$(抛物线的准线);一个定值1(抛物线的离心率)。

2、抛物线的方程

中心在坐标原点,焦点在$x$轴上的抛物线的标准方程是$y^2=2px(p>0)$;

中心在坐标原点,焦点在$y$轴上的抛物线的标准方程是$x^2=2py(p>0)$。

3、抛物线的几何性质

若抛物线方程为$y^2=2px(p>0)$,则

对称轴为$x$轴,焦点坐标$\left( \frac{p}{2},0 \right)$,准线方程为$x=-\frac{p}{2}$,离心率$e$=1,焦准距为$p,$通径长为2$p$。

注:(1)离心率:抛物线上的点$M$到焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用$e$表示。由定义可知,$e$=1。

(2)焦准距:抛物线的焦点到它的准线的距离,叫做焦准距。

(3)抛物线上到焦点距离最小的点是抛物线的顶点,距离的最小值为$\frac{p}{2}$。

4、点与抛物线的位置关系

对于抛物线$y^2=2px(p>0)$,我们有

(1)点$P(x_0,y_0)$在抛物线内部(与焦点共区域)$\Leftrightarrow y^2_0<2px_0$;

(2)点$P(x_0,y_0)$在抛物线外部(与焦点不共区域)$\Leftrightarrow y^2_0>2px_0$;

(3)点$P(x_0,y_0)$在抛物线上$\Leftrightarrow y^2_0=2px_0$。

二、抛物线的相关例题

设$O$为坐标原点,直线$x$=2与抛物线$C:y^2=2px(p>0)$交于$D$,$E$两点,若$OD⊥OE$,则$C$的焦点坐标为___

A.$\left( \frac{1}{4},0 \right)$

B.$\left( \frac{1}{2},0 \right)$

C.(1,0)

D.(2,0)

答案:B

解析:由题意得$D(2,2\sqrt{p})$,$E(2,-2\sqrt{p})$,

所以$\overrightarrow{O D}·\overrightarrow{O E}$=4-4$p$=0,解得$p$=1,所以焦点坐标为$\left( \frac{1}{2},0 \right)$,故选B。

小编推荐

1.一本线与特控线的区别有哪些 特控线怎么划定的

2.中外合作二本最低分数线的学校 读完有用吗

3.过二本线的中外合作办学有哪些 怎么报考

4.刚过二本线的中外合作办学 有哪些院校

5.2025刚过二本线的公办学校有哪些 哪所院校好

6.刚过二本线的医学院 哪些院校适合捡漏

7.强基线和一本线的区别是什么 哪个高

8.生物的特征有哪些 定义是什么

下载文档

猜你喜欢

2025美术生文化课462分能上聊城大学吗

25-04-02

2025音乐艺考生多少分可以报黑龙江生态工程职业学院

25-04-02

2025舞蹈艺考生多少分可以报湖南高速铁路职业技术学院

25-04-02

2025美术生文化课537分能上福建理工大学吗

25-04-02

2025舞蹈艺考生多少分可以报湖北孝感美珈职业学院

25-04-02

2025舞蹈艺考生多少分可以报江苏理工学院

25-04-02

2025美术艺考生多少分可以报上海海事大学

25-04-02

2025美术生文化课499分能上咸阳师范学院吗

25-04-02