立方根的表示方法和性质

文/声声慢

一、立方根的表示方法和性质

1、立方根和开立方

(1)一般地,如果一个数的立方等于$a$,那么这个数叫做$a$的立方根或三次方根。这就是说,如果$x^3=a$,那么$x$叫做$a$的立方根。

(2)求一个数的立方根的运算,叫做开立方。开立方与立方互为逆运算,可以通过这种关系求一个数的立方根。

2、立方根的表示方法

一个数$a$的立方根,用符号“$\sqrt[3]{a}$”表示,读作“三次根号$a$”,其中$a$是被开方数,3是根指数。如$\sqrt[3]{8}$表示8的立方根,$\sqrt[3]{8}=2$;$\sqrt[3]{-8}$表示$-8$的立方根,$\sqrt[3]{-8}=-2$,$\sqrt[3]{a}$中的根指数3不能省略。

3、立方根的性质

(1)正数的立方根是正数。

(2)负数的立方根是负数。

(3)0的立方根是0。

4、平方根与立方根的联系与区别

(1)联系

①都与相应的乘方运算互为逆运算,开平方与平方互为逆运算,开立方与立方互为逆运算。

②0的平方根和立方根都是它本身。

(2)区别

①在用符号表示平方根时,根指数2可以省略不写;而用符号表示立方根时,根指数3不能省略。

②平方根只有非负数才有,而立方根任何数都有。

③正数的平方根有两个,而正数的立方根只有1个。

④互为相反数的两个数的立方根也互为相反数。如:$-8$和8互为相反数,它们的立方根$-2$和2也互为相反数。即$\sqrt[3]{-a}=$$-\sqrt[3]{a}$。

二、立方根的相关例题

若$\sqrt[3]{2a-1}=-\sqrt[3]{5a+8}$,求$a^{2 020}$的值。

答案:1

解析:∵$\sqrt[3]{2a-1}=-\sqrt[3]{5a+8}$,∴$\sqrt[3]{2a-1}=\sqrt[3]{-(5a+8)}$,∴$2a-1=-(5a+8)$,解得$a=-1$。∴$a^{2 020}=(-1)^{2 020}=1$。

小编推荐

1.计划外中外合作办学值得上吗 有哪些避坑方法

2.2025填报高考志愿如何防止滑档 有哪些方法

3.2025高考96个志愿顺序如何安排 有哪些填报方法

4.2025河南高考志愿要注意什么 有哪些填报方法

5.高三期末考426分最后能提高多少分 学习方法有哪些

6.2025高考志愿填报方法是什么 有哪些填报流程

7.2025高考志愿冲稳保填报方法是什么 有哪些好的填报技巧

8.2025江苏高考40个志愿填报顺序如何安排 有哪些填报方法

下载文档

猜你喜欢

南卫理公会大学主要有什么专业 哪些受欢迎

25-01-21

2025四川绵阳二诊各科试题及答案汇总

25-01-21

南卫理公会大学申请时间在什么时候 几月份截止

25-01-21

南京财经大学4+0/1+3国际本科收费标准 学费多少钱

25-01-21

南卫理公会大学入学条件 怎么考进去

25-01-21

南方医科大学国际班收费标准 学费多少钱

25-01-21

南卫理公会大学一年的学费 提供哪些奖学金

25-01-21

南方科技大学4+0国际本科收费标准 学费多少钱

25-01-21