三角形的内切圆与内心

文/巴黎醉

一、三角形的内切圆与内心

1、三角形的内切圆

(1)三角形的内切圆的有关概念

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。

(2)三角形内切圆的作法

确定圆心:三角形两条角平分线的交点即为圆心。

确定半径:交点到三角形任意一边的距离即为内切圆的半径。

(3)如果三角形三边长分别为$a$,$b$,$c$,内切圆半径为$r$,则三角形的面积$S=\frac{1}{2}(a+b+c)r$。

2、三角形的外接圆

(1)不在同一条直线上的三个点确定一个圆。

(2)三角形的外接圆的有关概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。

(3)三角形外接圆的作法

①确定圆心:三角形两边的垂直平分线的交点即为圆心;

②确定半径:交点到三角形任意一顶点的距离即为外接圆的半径。

二、三角形的内切圆与内心的相关例题

若一直角三角形的斜边长为$c$,内切圆半径是$r$,则内切圆的面积与三角形面积之比是___

A.$\frac{πr}{c+2r}$ B.$\frac{πr}{c+r}$

C.$\frac{πr}{2c+r}$ D.$\frac{πr}{c^2+r^2}$

答案:B

解析:设直角三角形的两条直角边是$a$,$b$,则有:$S=\frac{a+b+c}{2}r$,又∵$r=\frac{a+b-c}{2}$,∴$a+b=2r+c$,将$a+b=2r+c$ 代入$S=\frac{a+b+c}{2}r$,得$S=\frac{2r+2c}{2}r=r(r+c)$。又∵内切圆的面积是$πr^2$,∴它们的比是$\frac{πr}{c+r}$。故选B。

小编推荐

1.高中三角函数难吗

2.余弦定理求三角形面积公式是什么 余弦定理性质

3.特殊角的三角函数值表是什么 怎么记忆

4.等腰三角形求底边公式 性质是什么

5.三角函数辅助角公式 是怎么求的

6.等边三角形有几条对称轴 性质是什么

7.全等三角形的判定方法五种 有哪些方法

8.三角形重心2:1怎么证明 过程是什么

下载文档

猜你喜欢

2025美术生文化课462分能上聊城大学吗

25-04-02

2025音乐艺考生多少分可以报黑龙江生态工程职业学院

25-04-02

2025舞蹈艺考生多少分可以报湖南高速铁路职业技术学院

25-04-02

2025美术生文化课537分能上福建理工大学吗

25-04-02

2025舞蹈艺考生多少分可以报湖北孝感美珈职业学院

25-04-02

2025舞蹈艺考生多少分可以报江苏理工学院

25-04-02

2025美术艺考生多少分可以报上海海事大学

25-04-02

2025美术生文化课499分能上咸阳师范学院吗

25-04-02