根的判别式的定义和应用

文/鸥迹

一、根的判别式的定义和应用

1、根的判别式

一般地,式子$b^2-4ac$叫做方程$ax^2+bx+c=0$($a≠0$)的根的判别式。通常用希腊字母$\mathit{Δ}$表示,即 $\mathit{Δ}=$$b^2-4ac$。

(1)当 $\mathit{Δ}=b^2-4ac>0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个不相等的实数根。即$x_1=$$\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)当 $\mathit{Δ}=b^2-4ac=0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个相等的实数根。即$x_1=x_2=-\frac{b}{2a}$。

(3)当$\mathit{Δ}=b^2-4ac<0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)无实数根。

2、一元二次方程根的判别式的应用

一元二次方程根的判别式的应用主要有以下三种情况

(1)不解方程,由根的判别式的正负性及是否为0可直接判定根的情况。

(2)根据方程根的情况,确定方程中字母系数的取值范围。

(3)应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)。

二、根的判别式的相关例题

已知$x_1$,$x_2$是一元二次方程$x^2-4x+1=0$的两个实数根,则$x_1·x_2$等于___

A.$-4$ B.$-1$ C.1 D.4

答案:C

解析:直接根据根与系数的关系求解得$x_1·x_2=\frac{c}{a}=1$。

小编推荐

1.计算机网络应用主要学什么 就业情况怎么样

2.数学与应用数学专业就业方向 未来发展怎么样

3.计算机网络应用专业是学什么的 好找工作吗

4.湖南应用技术学院是几本 学校怎么样

5.人工智能技术应用学什么 就业怎么样

6.物联网应用技术是做什么的 有哪些课程

7.上海应用技术大学是一本还是二本 是几本大学

8.城市轨道应用技术专业学什么 具体课程内容

下载文档

猜你喜欢

2024国际本科什么意思 一年的费用多少

24-11-06

2024北京石油国际本科值得读吗 有什么优势

24-11-06

2024浙江国际本科含金量高吗 读完好就业吗

24-11-06

2024山东财经大学国际本科靠谱吗 是正规的吗

24-11-06

2024美国国际本科有什么大学可以读 值得去吗

24-11-06

2024潍坊学院国际本科好吗 含金量咋样

24-11-06

2024山东省的国际本科学校有哪些 值得报考吗

24-11-06

2024上海名校国际本科值得读吗 是正规的项目吗

24-11-06