根的判别式的定义和应用

文/鸥迹

一、根的判别式的定义和应用

1、根的判别式

一般地,式子$b^2-4ac$叫做方程$ax^2+bx+c=0$($a≠0$)的根的判别式。通常用希腊字母$\mathit{Δ}$表示,即 $\mathit{Δ}=$$b^2-4ac$。

(1)当 $\mathit{Δ}=b^2-4ac>0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个不相等的实数根。即$x_1=$$\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)当 $\mathit{Δ}=b^2-4ac=0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个相等的实数根。即$x_1=x_2=-\frac{b}{2a}$。

(3)当$\mathit{Δ}=b^2-4ac<0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)无实数根。

2、一元二次方程根的判别式的应用

一元二次方程根的判别式的应用主要有以下三种情况

(1)不解方程,由根的判别式的正负性及是否为0可直接判定根的情况。

(2)根据方程根的情况,确定方程中字母系数的取值范围。

(3)应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)。

二、根的判别式的相关例题

已知$x_1$,$x_2$是一元二次方程$x^2-4x+1=0$的两个实数根,则$x_1·x_2$等于___

A.$-4$ B.$-1$ C.1 D.4

答案:C

解析:直接根据根与系数的关系求解得$x_1·x_2=\frac{c}{a}=1$。

小编推荐

1.上海应用技术大学算不算名校 毕业后好就业吗

2.电子技术应用专业出来能干什么 月薪大概是多少

3.2025物化地能报考应用化学专业吗 选科要求有哪些

4.上海应用技术大学是211吗 学校怎么样

5.上海电力大学和上海应用技术大学哪个好 如何选择

6.2025物化地能报应用机械工程专业吗 能报考哪些专业

7.2025物化地能报应用车辆工程专业吗 能报考哪些专业

8.2025物化地能报应用气象学专业吗 选科要求有哪些

下载文档

猜你喜欢

成都美博教育高考全科精品课

24-12-23

2025哈佛大学的学费一年多少 是否有奖学金

24-12-23

口碑好!太原高考一对一补习提分班名单

24-12-23

卡内基梅隆大学的申请条件 详细流程

24-12-19

卡内基梅隆大学一年学费多少钱 最新标准是什么

24-12-19

北京通州初中地理线下一对一老师推荐

24-12-19

2024浙江省强基联盟高三12月联考日语试题及答案解析

24-12-19

太原仁智高考2025届高考全年备考班招生简章

24-12-19