根的判别式的定义和应用

文/鸥迹

一、根的判别式的定义和应用

1、根的判别式

一般地,式子$b^2-4ac$叫做方程$ax^2+bx+c=0$($a≠0$)的根的判别式。通常用希腊字母$\mathit{Δ}$表示,即 $\mathit{Δ}=$$b^2-4ac$。

(1)当 $\mathit{Δ}=b^2-4ac>0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个不相等的实数根。即$x_1=$$\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)当 $\mathit{Δ}=b^2-4ac=0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个相等的实数根。即$x_1=x_2=-\frac{b}{2a}$。

(3)当$\mathit{Δ}=b^2-4ac<0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)无实数根。

2、一元二次方程根的判别式的应用

一元二次方程根的判别式的应用主要有以下三种情况

(1)不解方程,由根的判别式的正负性及是否为0可直接判定根的情况。

(2)根据方程根的情况,确定方程中字母系数的取值范围。

(3)应用判别式证明方程根的情况(有实根、无实根、有两个不相等实根、有两个相等实根)。

二、根的判别式的相关例题

已知$x_1$,$x_2$是一元二次方程$x^2-4x+1=0$的两个实数根,则$x_1·x_2$等于___

A.$-4$ B.$-1$ C.1 D.4

答案:C

解析:直接根据根与系数的关系求解得$x_1·x_2=\frac{c}{a}=1$。

小编推荐

1.2025年开设无人机应用技术专业大学排名及评级 高校排行榜

2.安徽工业职业技术学院应用化工技术专业怎么样 录取分数线多少

3.2025年435分能考数学与应用数学专业吗 435分数学与应用数学专业大学推荐

4.2025年开设数学与应用数学专业大学排名及评级 高校排行榜

5.南昌应用技术师范学院电子信息工程专业怎么样 录取分数线多少

6.2024上海应用技术大学在陕西录取分数线 各专业分数及位次

7.山西应用科技学院有哪些热门专业 推荐的王牌专业

8.2025艺考多少分能上江西应用技术职业学院 最低分数线是多少

下载文档

猜你喜欢

2025美术生文化课462分能上聊城大学吗

25-04-02

2025音乐艺考生多少分可以报黑龙江生态工程职业学院

25-04-02

2025舞蹈艺考生多少分可以报湖南高速铁路职业技术学院

25-04-02

2025美术生文化课537分能上福建理工大学吗

25-04-02

2025舞蹈艺考生多少分可以报湖北孝感美珈职业学院

25-04-02

2025舞蹈艺考生多少分可以报江苏理工学院

25-04-02

2025美术艺考生多少分可以报上海海事大学

25-04-02

2025美术生文化课499分能上咸阳师范学院吗

25-04-02