一、分式的乘除法和乘方法则
1、分式的乘除
(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$\frac{a}{b}·\frac{c}{d}=\frac{a·c}{b·d}$。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$\frac{a}{b}÷\frac{c}{d}=\frac{a}{b}·\frac{d}{c}=\frac{a·d}{b·c}$。
(3)乘方法则:一般地,当$n$是正整数时,
$\left(\displaystyle{}\frac{a}{b}\right)^n=$$\begin{matrix} \underbrace{\displaystyle{}\frac{a}{b}·\frac{a}{b}·\cdots·\frac{a}{b} }\\n个 \end{matrix}=$$\begin{matrix}n个\\ \overbrace{\begin{matrix} \underbrace{\displaystyle{}\frac{a·a·\cdots·a}{b·b·\cdots·b}} \\n个\\ \\ \end{matrix}} \end{matrix}=$$\displaystyle{}\frac{a^n}{b^n}$,即$\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减
类似分数的加减,分式的加减法则是
(1)同分母分式相加减,分母不变,把分子相加减。
即:$\frac{a}{c}±\frac{b}{c}=\frac{a±b}{c}$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\frac{a}{b}±\frac{c}{d}=\frac{ad}{bd}±\frac{bc}{bd}=\frac{ad±bc}{bd}$。
二、分式的乘除法的相关例题
当分式$-\frac{1}{xy}$与$-\frac{1}{x^2y}$经过计算后的结果是$-\frac{x+1}{x^2y}$时,则它们进行的运算是___
A.分式的加法
B.分式的减法
C.分式的乘法
D.分式的除法
答案:A
解析:$-\frac{1}{xy}+\left(-\frac{1}{x^2y}\right)=-\frac{x+1}{x^2y}$,故选A。