复数指的是象z=a+bi(a、b都是实数)这样的数。那么复数的平方该怎样计算呢?
复数的平方可以根据公式:(a+bi)^2=(a+bi)*(a+bi)=a^2+2abi+(bi)^2=a^2+2abi-b^2计算得出,复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
根据定义,若z= (a∈R,b∈R),则=a-bi(a∈R,b∈R)。共轭复数所对应的点关于实轴对称。两个复数x+yi与x-yi 称为共轭复数,它们的实部相等,虚部互为相反数。在复平面上,表示两个共轭复数的点关于x轴对称,而这一点正是“共轭”一词的来源——两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做“轭”。如果用z表示x+yi,那么在字母z上面加上一条横线就表示它的共轭复数x-yi。