根据 |A|A⁻¹=A*,有(A⁻¹)*= |A⁻¹|(A⁻¹)⁻¹=A/|A|,而(A*)⁻¹= (|A|A⁻¹)⁻¹ = (A⁻¹)⁻¹/|A| = A/|A|,故矩阵逆的伴随矩阵等于伴随矩阵的逆,即(A⁻¹)*=(A*)⁻¹。
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
逆矩阵
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。