素数一般指质数。质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
根据定义所有素数都是大于1的自然数,那么小于等于1的数都没有素数的概念。数字2只有1和2两个因数,因而必定是素数,其他数字x只要判定从2到x-1都无法被它整除,就证明改数字是素数。
仔细思考就会发现,其实数字x的因数分成两大部分,一部分是小于x的平方根,另外一部分大于x的平方根,小于平方根和大于平方根的部分是一一对应的,因而可以只判断从2到平方根的数字是否都能被整除即可。
根据数论理论可以把数字分成6个大部分,6i,6i+1,6i+2,6i+3,6i+4,6i+5,也就是说数字x%6计算的值一定是0,1,2,3,4,5这6个数字,而6i,6i+2,6i+3,6i+4一定就是合数,它们都有除了1之外的因数,只有6i+1和6i+5可能是素数,因而一旦判定数字大于等于且6取模结果为0,2,3,4就可以判定不是素数。
最后一种筛选法,就是从2开始可以知道2的所有倍数都是合数,不是2的倍数可能是素数,第一个不是2的倍数的数一定是素数,也就是3,接着将3的倍数全部筛选掉,第一个不是2的倍数也不是3的倍数的数一定是素数也就是5,以此类推,最终筛选出某一范围内的所有素数,接着查表就能得知数字是否是素数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。
这也说明了前面所提到的质数在数论中有着重要地位。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。