中位线是平面几何内的三角形任意两边中点的连线或梯形两腰中点的连线。下面是中位线的性质相关内容,来看一下吧!
三角形中位线的性质:
1、平行于三角形的第三边,且等于第三边的一半;
2、任何一个三角形都有三条中位线,而三条中位线组成的小三角形周长为原三角形周长的一半;
3、三条中位线将三角形分成四个全等的小三角形;
4、三角形的中位线和它相交的中线相互平分;
5、任意两条中位线的夹角等于这个夹角对应的顶角大小。
梯形中位线性质:
1、梯形的中位线平行于两底,并且等于两底和的一半。
2、梯形中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L。
三角形:连结三角形两边中点的线段叫做三角形的中位线。三角形的中位线平行于第三边,其长度为第三边长的一半,通过相似三角形的性质易得。其两个逆定理也成立,即经过三角形一边中点平行于另一边的直线,必平分第三边;以及三角形内部平行于一边且长度为此边一半的线段必为此三角形的中位线。但是注意过三角形一边中点作一长度为底边一半的线段有两个,不一定与底边平行。
梯形:连结梯形两腰中点的线段叫做梯形的中位线。梯形的中位线平行于上底和下底,其长度为上、下底长度和的一半,可将梯形旋转180°、将其补齐为平行四边形后易证。其逆定理正确与否与上相仿。
连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边并且等于第三边边长的一半。
连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。