矩阵A是方阵时,有行列式|A|,令|λI-A|=0,解出特征值λ。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
行列式就是一个数值,但是能做行列式运算的必须是方阵。
|AB|=|A||B| 这是行列式的一个基本性质,专家就是研究出这样的一个性质,你能看懂证明,就行了,会做题即可。考试一般会出选择或是填空。
特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
特征值是线性代数中的一个重要概念,在数学、物理学、化学、计算机等领域有着广泛的应用。
7.放线菌的菌落特征