二阶非齐次线性微分方程的特解

文/冷羽轻寒

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如果f(x)=P(x),Pn(x)为n阶多项式;2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。

二阶常系数齐次线性微分方程

标准形式

y″+py′+qy=0

特征方程

r^2+pr+q=0

通解

1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2.两根相等的实根:y=(C1+C2x)e^(r1x)

3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

特解y*设法

1、如果f(x)=P(x),Pn(x)为n阶多项式。

若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。

比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。

若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。

若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。

2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。

若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。

若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。

若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。

3、如果f(x)=[Pl(x)cos(βx)+Pn(x)sin(βx)]e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。

若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。

即y*=[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx

若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=1,即y*=x*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx。

小编推荐

1.拐点是二阶导数为零的点吗 拐点的条件是什么

2.怎么解一元二次方程 有解的条件是什么

3.一元二次方程解题步骤 该怎么解

4.镁条化学反应 方程式是什么

5.非齐次线性方程组的通解 如何求解

6.配平化学方程式的方法是什么 配平口诀整理

7.铝与稀盐酸反应的化学方程式怎么写 产生什么现象

8.铜和浓硝酸反应方程式是什么

下载文档

猜你喜欢

高三数学一对一补课有用吗 哪些学生适合一对一

25-01-09

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-30

高三数学怎么快速提高成绩 有什么技巧

24-11-22

高三数学零基础怎么补救 学习技巧有哪些

24-11-18

高二数学不好怎么补救 有哪些学习方法

24-11-18

高中数学成绩太差怎么办 怎么提高成绩

24-11-18

高中数学提分技巧 如何提高成绩

24-11-18