空间直角坐标系的定义和坐标

文/雨也萧萧

一、空间直角坐标系的定义和坐标

1、空间直角坐标系

在单位正方体$OABC-D′A′B′C′$中,以$O$点为原点,分别以射线$OA$,$OC$,$OD′$的方向为正方向,以线段$OA$,$OC$,$OD′$的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。这时我们说建立了一个空间直角坐标系$Oxyz$,其中点$O$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。通过每两个坐标轴的平面叫做坐标平面,分别称为$xOy$平面、$yOz$平面、$xOz$平面。

2、空间向量的坐标

一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。如$A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,则$\overrightarrow{AB}=$$\overrightarrow{OB}-$$\overrightarrow{OA}=$$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。

3、空间向量的坐标运算

设$\boldsymbol a(x_1,y_1,z_1)$,$\boldsymbol b(x_2,y_2,z_2)$,则

(1)$\boldsymbol a+\boldsymbol b=(x_1+x_2,y_1+y_2,z_1+z_2)$。

(2)$\boldsymbol a-\boldsymbol b=(x_1-x_2,y_1-y_2,z_1-z_2)$。

(3)$\boldsymbol a·\boldsymbol b=x_1x_2+y_1y_2+z_1z_2$。

(4)$|\boldsymbol a|=\sqrt{x^2_1+y^2_1+z^2_1}$。

(5)$λ\boldsymbol a=(λx_1,λy_1,λz_1)$。

4、空间向量平行(共线)与垂直的充要条件

设非零向量$\boldsymbol a(x_1,y_1,z_1)$,$\boldsymbol b(x_2,y_2,z_2)$,则

$\boldsymbol a∥\boldsymbol b\Leftrightarrow \frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{R})$。

$\boldsymbol a⊥\boldsymbol b\Leftrightarrow \boldsymbol a·\boldsymbol b=0\Leftrightarrow x_1x_2+y_1y_2+z_1z_2=0$。

5、空间中的中点坐标公式、夹角和距离公式

(1)中点坐标公式

在空间直角坐标系中,若$A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,$P$为$AB$的中点,则点$P$的坐标为$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2},\frac{z_1+z_2}{2}\right)$。

(2)夹角公式

设非零向量$\boldsymbol a=(a_1,a_2,a_3)$,$\boldsymbol b=(b_1,b_2,b_3)$,则$\cos〈\boldsymbol a,\boldsymbol b〉=$$\frac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a^2_1+a^2_2+a^2_3}\sqrt{b^2_1+b^2_2+b^2_3}}$。

(3)距离公式

在空间直角坐标系中,已知$A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,则$|\overrightarrow{AB}|=$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$。

6、空间中点的对称

(1)$P(x,y,z)$关于平面$xOy$的对称点为$P_1(x,y,-z)$.

(2)$P(x,y,z)$关于平面$yOz$的对称点为$P_1(-x,y,z)$.

(3)$P(x,y,z)$关于平面$xOz$的对称点为$P_1(x,-y,z)$.

(4)$P(x,y,z)$关于$x$轴的对称点为$P_1(x,-y,-z)$.

(5)$P(x,y,z)$关于$y$轴的对称点为$P_1(-x,y,-z)$.

(6)$P(x,y,z)$关于$z$轴的对称点为$P_1(-x,-y,z)$.

(7)$P(x,y,z)$关于坐标原点$O$的对称点为$P_1(-x,-y,-z)$.

空间对称问题记法为:关于谁对称,谁的坐标不变,其他坐标变为原来的相反数;关于原点对称,所有坐标都变为原来的相反数。

二、空间直角坐标系

下列叙述中,正确的个数是___

①空间直角坐标系中,在$x$轴上的点的坐标可写成$(0,b,c)$的形式;②空间直角坐标系中,在$yOz$平面内的点的坐标可写成$(0,b,c)$的形式;③空间直角坐标系中,在$z$轴上的点的坐标可写成$(0,0,c)$的形式;④空间直角坐标系中,在$xOz$平面内的点的坐标可写成$(a,0,c)$的形式。

A.1 B.2 C.3 D.4

答案:C

解析:①空间直角坐标系中,在$x$轴上的点的坐标可写成$(a,0,0)$的形式;故①错误;②空间直角坐标系中,在$yOz$平面内的点的坐标可写成$(0,b,c)$的形式;故②正确;③空间直角坐标系中,在$z$轴上的点的坐标可写成$(0,0,c)$的形式;故③正确;④空间直角坐标系中,在$xOz$平面内的点的坐标可写成$(a,0,c)$的形式,故④正确;故选C。

小编推荐

1.开设网络空间安全专业的院校有哪些 最新名单整理

2.高三三百多分最后能提高多少分 提升空间有多大

3.空间科学与技术专业是干什么的 就业前景如何

4.高三一模420分高考能考多少分 还有提升空间吗

5.高一成绩就定型了吗 有提升空间吗

6.生物的特征有哪些 定义是什么

7.勾股计算公式 勾股定理的定义

8.正态分布的概率密度函数公式 正态分布的定义是什么

下载文档

猜你喜欢

卡内基梅隆大学的申请条件 详细流程

24-12-19

卡内基梅隆大学一年学费多少钱 最新标准是什么

24-12-19

北京通州初中地理线下一对一老师推荐

24-12-19

2024浙江省强基联盟高三12月联考日语试题及答案解析

24-12-19

太原仁智高考2025届高考全年备考班招生简章

24-12-19

北京交通大学SQA3+1国际本科项目2024级春季补录申请条件

24-12-19

密歇根大学要读几年 毕业要求是什么

24-12-19

太原仁智高考补习学校地址

24-12-19