勾股定理的逆定理和应用

文/卡徒

一、勾股定理的逆定理和应用

1、勾股定理

(1)文字语言

直角三角形两直角边的平方和等于斜边的平方。

(2)符号语言

如果直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,那么$a^2+$$b^2=$$c^2$。

(3)变式及应用

设直角三角形的两条直角边长分别为$a$,$b$,斜边长为$c$,则

$a^2=c^2-b^2$,$b^2=c^2-a^2$,

$c=\sqrt{a^2+b^2}$,$a=\sqrt{c^2-b^2}$,$b=\sqrt{c^2-a^2}$。

2、勾股定理的应用

(1)已知直角三角形的两边,求第三边。

(2)表示长度为无理数的线段。

(3)在数轴上作出表示无理数的点。

注:勾股定理只适用于直角三角形,所以常作辅助线——高,从而构造直角三角形。

3、勾股定理的逆定理

3、勾股定理的逆定理

如果三角形的三边长 $a$,$b$,$c$满足$a^2+$$b^2=$$c^2$,那么这个三角形是直角三角形。

能够成为直角三角形三条边长的三个正整数,称为勾股数。若$a$,$b$,$c$是一组勾股数,则$ak$,$bk$,$ck$($k$是正整数)也是一组勾股数。

4、勾股定理的逆定理的应用

运用勾股定理的逆定理判定一个三角形是直角三角形的方法

(1)先确定最长边,算出最长边的平方;

(2)计算另两边的平方和;

(3)比较最长边的平方与另两边的平方和是否相等,若相等,则此三角形为直角三角形。

二、勾股定理的逆定理的相关例题

以下列各组数为边长,能组成直角三角形的是___

A.1,2,3

B.2,3,4

C.3,4,5

D.4,5,6

答案:C

解析:因为$1^2+2^2≠3^2$,$2^2+3^2≠4^2$,$4^2+5^2≠6^2$,所以$A$,$B$,$D$都不能组成直角三角形。因为$3^2+4^2=5^2$,所以$C$能组成直角三角形。

小编推荐

1.上海应用技术大学算不算名校 毕业后好就业吗

2.电子技术应用专业出来能干什么 月薪大概是多少

3.2025物化地能报考应用化学专业吗 选科要求有哪些

4.上海应用技术大学是211吗 学校怎么样

5.上海电力大学和上海应用技术大学哪个好 如何选择

6.2025物化地能报应用机械工程专业吗 能报考哪些专业

7.2025物化地能报应用车辆工程专业吗 能报考哪些专业

8.2025物化地能报应用气象学专业吗 选科要求有哪些

下载文档

猜你喜欢

卡内基梅隆大学的申请条件 详细流程

24-12-19

卡内基梅隆大学一年学费多少钱 最新标准是什么

24-12-19

北京通州初中地理线下一对一老师推荐

24-12-19

2024浙江省强基联盟高三12月联考日语试题及答案解析

24-12-19

太原仁智高考2025届高考全年备考班招生简章

24-12-19

北京交通大学SQA3+1国际本科项目2024级春季补录申请条件

24-12-19

密歇根大学要读几年 毕业要求是什么

24-12-19

太原仁智高考补习学校地址

24-12-19