积的乘方运算和分式的乘方

文/小天

一、积的乘方运算和分式的乘方

1、幂的乘方

$(a^m)^n=a^{mn}$($m$,$n$都是正整数)。

即:幂的乘方,底数不变,指数相乘。

2、积的乘方

$(ab)^n=a^nb^n$($n$为正整数)。即:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。这个性质对于三个或三个以上因式的积的乘方也适用,如$(abc)^n=$$a^nb^nc^n$($n$是正整数)。

3、分式的乘方

乘方法则:一般地,当$n$是正整数时,

$\left(\displaystyle{}\frac{a}{b}\right)^n=$$\begin{matrix} \underbrace{\displaystyle{}\frac{a}{b}·\frac{a}{b}·\cdots·\frac{a}{b} }\\n个 \end{matrix}=$$\begin{matrix}n个\\ \overbrace{\begin{matrix} \underbrace{\displaystyle{}\frac{a·a·\cdots·a}{b·b·\cdots·b}} \\n个\\ \\ \end{matrix}} \end{matrix}=$$\displaystyle{}\frac{a^n}{b^n}$,即$\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$。

即分式乘方要把分子、分母分别乘方。

二、积的乘方运算的相关例题

下列计算正确的是___

A.$x^4·x^4=x^{16}$

B.$(a^3)^2=a^5$

C.$(ab^2)^3=a^3b^6$

D.$a+2a=2a^2$

答案:C

解析:A项,$x^4·x^4=x^{4+4}=x^{8}$,故A选项错误;B项,$(a^3)^2=a^{3×2}=a^6$,故B选项错误;C项,$(ab^2)^3=a^3(b^2)^3=a^3b^6$,故C选项正确;D项,$a+2a=(1+2)a=3a$,故D选项错误。

小编推荐

1.矩阵的乘法运算法则

2.两个重要极限是什么 运算法则是怎样的

3.log的运算法则 log是什么意思

4.导函数公式运算法则 怎样计算导函数

5.除法的定义和运算法则

6.小数的乘除法和运算法则

7.整数的加减法运算法则

8.分式的除法和除法法则

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02