不等式的概念和性质

文/夜满月

一、不等式的概念和性质

1、不等式的有关概念

(1)用符号“<”或“>”表示大小关系的式子,叫做不等式。像$a+2≠$$a-2$这样用符号“$≠$”表示不等关系的式子也是不等式。

(2)不等式的解:使不等式成立的未知数的值叫做不等式的解。例如:80和78是不等式$\frac{2}{3}x>50$的解,而75和72不是不等式$\frac{2}{3}x>50$的解。

(3)不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解集。

(4)解不等式:求不等式的解集的过程叫做解不等式。

不等式的解集可以在数轴上表示出来。

2、不等式的性质

(1)不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。即如果$a>b$,那么$a±c>$$b±c$。

(2)不等式的性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,即如果$a>b$,$c>0$,那么$ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。

(3)不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。即如果$a>b$,$c<0$,那么$ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。

特别地,① 若$a±c>b±c$,那么$a>b$。

② 若$ac>bc$$(c>0)$,那么$a>b$;若$ac>bc$$(c<0)$,那么$a<b$。

③ 若只知$ac>bc$,而不知$c$的正负号,那么无法判断$a$和$b$的大小。

二、不等式的相关例题

$a$,$b$都是实数,且$a<b$,则下列不等式的变形正确的是___

A.$a+x>b+x$

B.$-a+1<-b+1$

C.$3a<3b$

D.$\frac{a}{2}>\frac{b}{2}$

答案:C

解析:∵$a<b$,∴$a+x<b+x$,故A错误;∵$a<b$,∴$-a>-b$,∴$-a+1>$$-b+1$,故B错误;∵$a<b$,∴$3a<3b$,故C正确;∵$a<b$,∴$\frac{a}{2}<\frac{b}{2}$,故D错误。

小编推荐

1.辛亥革命的历史意义 性质是什么

2.美国独立战争的性质 爆发战争的原因是什么

3.菱形的对角线平分对角吗 有哪些性质

4.平行四边形面积公式 有什么性质

5.考上空军航空大学是什么概念 很厉害吗

6.人民代表大会的性质和地位

7.2023高考全省10000名是什么概念 厉害吗

8.五四运动的性质是什么 有哪些历史意义

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02