不等式的定义和解不等式

文/皓雪殇

一、不等式的定义和解不等式

1、不等式的有关概念

(1)用符号“<”或“>”表示大小关系的式子,叫做不等式。像$a+2≠$$a-2$这样用符号“$≠$”表示不等关系的式子也是不等式。

(2)不等式的解:使不等式成立的未知数的值叫做不等式的解。例如:80和78是不等式$\frac{2}{3}x>50$的解,而75和72不是不等式$\frac{2}{3}x>50$的解。

(3)不等式的解集:一个含有未知数的不等式的所有的解,组成这个不等式的解集。

(4)解不等式:求不等式的解集的过程叫做解不等式。

不等式的解集可以在数轴上表示出来。

2、不等式的性质

(1)不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。即如果$a>b$,那么$a±c>$$b±c$。

(2)不等式的性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,即如果$a>b$,$c>0$,那么$ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。

(3)不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。即如果$a>b$,$c<0$,那么$ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。

特别地,①若$a±c>b±c$,那么$a>b$。

②若$ac>bc$$(c>0)$,那么$a>b$;若$ac>bc$$(c<0)$,那么$a<b$。

③若只知$ac>bc$,而不知$c$的正负号,那么无法判断$a$和$b$的大小。

二、不等式的定义的相关例题

$a$,$b$都是实数,且$a<b$,则下列不等式的变形正确的是___

A.$a+x>b+x$

B.$-a+1<-b+1$

C.$3a<3b$

D.$\frac{a}{2}>\frac{b}{2}$

答案:C

解析:∵$a<b$,∴$a+x<b+x$,故A错误;∵$a<b$,∴$-a>-b$,∴$-a+1>$$-b+1$,故B错误;∵$a<b$,∴$3a<3b$,故C正确;∵$a<b$,∴$\frac{a}{2}<\frac{b}{2}$,故D错误。

小编推荐

1.重阳节的意义和风俗 有哪些传统活动

2.导数的定义式

3.2023高考生物答题技巧和解题技巧 注意事项有哪些

4.什么是三角函数 定义是什么

5.自然数的定义是什么 有什么特点

6.lnarcsinx的定义域

7.arccosx的定义域

8.c语言的函数可以嵌套定义

下载文档

猜你喜欢

2024广东国际本科班的含金量高吗 值得去吗

24-11-12

2024高三毕业去美国留学好吗 有什么优势

24-11-12

2024浙江大学国际本科班有哪些专业 含金量咋样

24-11-12

2024澳大利亚留学机构排名榜 哪家好一些

24-11-12

2024兰州大学国际本科好吗 有什么优势

24-11-12

2024出国留学要好多钱吗 省钱方法有哪些

24-11-12

2024临沂大学国际本科办了多少年 值得去读吗

24-11-12

2024医学出国留学哪个国家最好 怎么申请

24-11-12