根与系数的关系及分布

文/倾心~九月

一、根与系数的关系及分布

1、一元二次方程根的个数与根的分布

一般地,式子$b^2-4ac$叫做方程$ax^2+bx+c=0$($a≠0$)的根的判别式。通常用希腊字母$\mathit{Δ}$表示,即 $\mathit{Δ}=$$b^2-4ac$。

(1)当 $\mathit{Δ}=b^2-4ac>0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个不相等的实数根。即$x_1=$$\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)当 $\mathit{Δ}=b^2-4ac=0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个相等的实数根。即$x_1=x_2=-\frac{b}{2a}$。

(3)当$\mathit{Δ}=b^2-4ac<0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)无实数根。

2、一元二次方程的根与系数的关系

当$b^2-4ac\geqslant0$时,一元二次方程$ax^2+$$bx+$$c=0$($a≠0$)有两个实数根$x_1$,$x_2$,且满足求根公式$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$,则有:$x_1+x_2=$$\frac{-b+\sqrt{b^2-4ac}}{2a}+$$\frac{-b-\sqrt{b^2-4ac}}{2a}=$$-\frac{b}{a}$,$x_1·x_2=$$\frac{-b+\sqrt{b^2-4ac}}{2a}·$$\frac{-b-\sqrt{b^2-4ac}}{2a}=$$\frac{c}{a}$,即$x_1$,$x_2$满足:$x_1+x_2=-\frac{b}{a}$,$x_1x_2=\frac{c}{a}$。

二、根与系数的关系的相关例题

已知$x_1$,$x_2$是一元二次方程$x^2-4x+1=0$的两个实数根,则$x_1·x_2$等于___

A.-4 B.-1 C.1 D.4

答案:C

解析:直接根据根与系数的关系求解得$x_1·x_2=\frac{c}{a}=1$。

小编推荐

1.武汉大学国际关系硕士研究生调剂原则2023

2.奇点计划跟强基计划有关系吗 哪些人适合报强基计划

3.孩子学奥数的最佳年龄 几岁最合适

4.2024考研考点和报考学校有关系么 考点是就近分配吗

5.考研英语分值分布

6.管综199正常能考多少 分值分布

7.5000年历史顺序时间表 历朝历代分布情况

8.中华上下五千年历朝历代分布情况一览表

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02