矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。
特征向量对应的特征值是它所乘的那个缩放因子。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。
特征值的几何重次是相应特征空间的维数。
有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。
1.2025重庆物化生565分左右能上什么大学 可以报考的院校名单
2.山东高考位次154000名左右报什么大学好(2025年参考)
3.广东高考位次83000名左右报什么大学好(2025年参考)
4.重庆高考位次111000名左右报什么大学好(2025年参考)
5.湖南高考位次269000名左右报什么大学好(2025年参考)
6.2025浙江物化生420分左右能上什么大学 可以报考的院校名单
7.福建高考位次87000名左右报什么大学好(2025年参考)
8.贵州高考位次143000名左右报什么大学好(2025年参考)