二元函数连续、偏导数存在、可微之间的关系:可微一定可导,可导一定连续。可导不一定可微,连续不一定可导。若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。
3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。
4、可微的充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。
1、在一元的情况下,可导=可微->连续,可导一定连续,反之不一定。
2、二元就不满足以上的结论,在二元的情况下:
(1)偏导数存在且连续,函数可微,函数连续。
(2)偏导数不存在,函数不可微,函数不一定连续。
(3)函数可微,偏导数存在,函数连续。
(4)函数不可微,偏导数不一定存在,函数不一定连续。
(5)函数连续,偏导数不一定存在,函数不一定可微。
(6)函数不连续,偏导数不一定存在,函数不可微。
1.2024年国际关系学院热门专业全国排名 有哪些专业比较好
3.2024年中国劳动关系学院热门专业全国排名 有哪些专业比较好
6.高考多少分能上中国劳动关系学院 录取最低分是多少(2025参考)