n阶矩阵一定有n个特征值吗?

文/流氓鼠

n阶矩阵有n个特征值(包括相同的特征值)。三阶矩阵就一定有3个特征值,因为求特征值的时候,是算|xE-A|=0的根,|xE-A|是个3次多项式,必定有3个根。矩阵的秩就是非零特征值的个数。现在r(A)=1,就是说,3个根中只有1个非零根,那剩下两个必定是0,是这样看出来的。

n阶矩阵至少有n个特征值吗

是的,n阶矩阵一定有n个特征值。因为特征值是特征多项式的根,n阶方阵的特征多项式是个n次多项式,根据代数基本定理,n次多项式有且只有n个根(重根按重数计算),这些根可能是实数,也可能是复数。

更加详细的说法为:一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。一个n阶实对称矩阵一定有n个实特征值(包括重根)。每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。

n阶矩阵相关信息

设A是数域P上的一个n阶矩阵,λ是一个未知量。

称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。

¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。

性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

小编推荐

1.冷门专业就一定不好就业吗 哪些冷门专业薪资高

2.为了南京邮电大学放弃211值吗 学校好不好

3.专科一定不如本科吗 二者有何区别

4.韩国留学一定不要陷入哪些误区?山理工为您详情解答!

5.在韩国大学选课之前你一定要知道这些!

6.艺术类专业一定要艺考吗 不艺考能报哪些专业

7.初二怎样提高数学成绩?建议初二的家长一定要看

8.飞行技术专业一定是飞行员吗 就业方向有哪些

下载文档

猜你喜欢

高三数学一对一补课有用吗 哪些学生适合一对一

25-01-09

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-30

高三数学怎么快速提高成绩 有什么技巧

24-11-22

高三数学零基础怎么补救 学习技巧有哪些

24-11-18

高二数学不好怎么补救 有哪些学习方法

24-11-18

高中数学成绩太差怎么办 怎么提高成绩

24-11-18

高中数学提分技巧 如何提高成绩

24-11-18