一元二次方程的解法及解题步骤

文/绝缘

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。

一元二次方程介绍

含义及特点

(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。

(2)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式(△=b²-4ac)决定。

判别式

利用一元二次方程根的判别式(△=b²-4ac)可以判断方程的根的情况。

一元二次方程ax²+bx+c=0(a≠0)的根与根的判别式 有如下关系:△=b²-4ac

①当△>0时,方程有两个不相等的实数根;

②当△=0时,方程有两个相等的实数根;

③当△<0时,方程无实数根,但有2个共轭复根。

上述结论反过来也成立。

一元二次方程求解方法

方法 一、公式法

先判断△=b²-4ac,

若△<0原方程无实根;

若△=0,

原方程有两个相同的解为:

X=-b/(2a);

若△>0,

原方程的解为:

X=((-b)±√(△))/(2a)。

方法二、配方法

先把常数c移到方程右边得:

aX²+bX=-c

将二次项系数化为1得:

X²+(b/a)X=- c/a

方程两边分别加上(b/a)的一半的平方得:

X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²

方程化为:

(b+(2a))²=- c/a +(b/(2a))²

①、若- c/a +(b/(2a))²<0,原方程无实根;

②、若- c/a +(b/(2a))² =0,原方程有两个相同的解为X=-b/(2a);

③、若- c/a +(b/(2a))²>0,原方程的解为X=(-b)±√((b²-4ac))/(2a)。

方法三、直接开平方法

形如(X-m)²=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√n

方法四、因式分解法

将一元二次方程aX²+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。

小编推荐

1.2025高考志愿可以用手机填报吗 填报步骤有哪些

2.马来西亚留学申请步骤是什么 需要多久时间

3.新加坡本科申请流程 具体详细步骤

4.申请新加坡国立本科alevel要求 有哪些流程步骤

5.申请新加坡高中需要什么条件 有哪些步骤

6.新加坡管理学院申请条件 详细流程步骤

7.新加坡硕士留学申请条件及流程 详细步骤

8.山东省实验中学2025届高三第二次诊断考试政治试题及答案

下载文档

猜你喜欢

高三数学一对一补课有用吗 哪些学生适合一对一

25-01-09

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-30

高三数学怎么快速提高成绩 有什么技巧

24-11-22

高三数学零基础怎么补救 学习技巧有哪些

24-11-18

高二数学不好怎么补救 有哪些学习方法

24-11-18

高中数学成绩太差怎么办 怎么提高成绩

24-11-18

高中数学提分技巧 如何提高成绩

24-11-18