三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
半角公式
sin(A/2)=±√((1-cosA)/2)
cos(A/2)=±√((1+cosA)/2)
tan(A/2)=±√((1-cosA)/((1+cosA))
倍角公式
Sin2A=2SinA*CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
两角和与差公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cossinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
积化和差公式
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
和差化积公式
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
同角三角函数的基本关系式
倒数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin2(α)+cos2(α)=1
1+tan2(α)=sec2(α)
1+cot2(α)=csc2(α)
构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。