勾股定理的证明方法

文/北京时间

最常见的勾股定理证明方法是欧几里得证明,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。如图,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等,即

在这个定理的证明中,我们需要如下四个辅助定理:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半,如。

任意一个正方形的面积等于其两边长的乘积。

任意一个矩形的面积等于其两边长的乘积。

证明的方法如下:

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成正方形CBDE、BAGF和ACIH。如上图,

画出过点A与BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A、K和L在同一直线上,所以四边形面积。

因为C、A和G在同一直线上,所以正方形面积。

因此=AB²。

同理可证,=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

小编推荐

1.甲午年是哪一年 计算方法是什么

2.不去学校复读怎么报名高考 2024复读生高考报名方法

3.初中辍学怎么提升学历 有哪些方法

4.艺考2024文化分要求 备考方法有哪些

5.零基础学金融从哪开始 有什么方法

6.小学文凭怎么提升学历 有哪些方法

7.穷人最快的挣钱方法 有哪些赚钱快的路子

8.时区划分及计算方法 具体规则

下载文档

猜你喜欢

高中数学技巧解题秒杀 实用解题技巧整理

24-10-29

高一数学考30分还有救吗 基础差怎么提分

24-10-29

有数学天赋的孩子特征是什么 哪些人适合学数学

24-10-28

余弦定理求三角形面积公式是什么 余弦定理性质

24-10-28

高三数学零基础快速提升的秘籍

24-10-28

高三学生数学太差该从何入手 有哪些提分技巧

24-10-28

数学提分秘籍 轻松应对高考挑战

24-10-28

学思维好还是学奥数好 应该如何选择

24-10-28