数列极限的证明

文/凯哥

用极限定义证明数列极限的关键是对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。因此,关键是找出N。

极限定义证明数列极限的关键

1、对Πε>0,都能找到一个正整数N,当n>N时,有|an-a|<ε成立,这里的Πε>0,由证题者自己给出。因此。关键是找出N。那么,如何寻找N呢?

2、显然,要寻找的N,一定要满足当n>N时,有|an-a|<ε成立。而|an-a|可以看成是关于正整数n的函数,我们可以通过求解不等式|an-a|<ε,找到使|an-a|<ε成立,n所要满足的条件,亦即不等式|an-a|<ε的解集。该解集是自然数集N的无限子集,对同一个ε,N并不惟一。

3、因此,只需在该解集找出一个作为N即可。这样寻找N的工作就转化成求解不等式|an-a|<ε的问题了。

六种方法

1、利用数列极限

2、利用极限性质

3、利用迫敛性

4、利用级数收敛的必要条件

5、利用单调有界原理

6、利用柯西准则

数列极限

设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并记作Xn→a(n→∞)

读作“当n趋于无穷大时,{Xn}的极限等于或趋于a”。

若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列。

该定义常称为数列极限的ε-N定义。

对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。

定理1:如果数列{Xn}收敛,则其极限是唯一的。

定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。

小编推荐

1.韩国留学必备材料:存款证明全解析

2.日本留学自己申请难么 需要多少存款证明

3.英国出国留学资金证明要求 需要哪些材料

4.海外留学证明办理需要什么条件 有哪些手续

5.高中数列难不难

6.2024澳洲一年留学多少钱 需要多少存款证明

7.2024韩国出国留学一年的费用是多少 存款证明要求高吗

8.2024去日本留学需要多少钱 要存款证明吗

下载文档

猜你喜欢

高三数学一对一补课有用吗 哪些学生适合一对一

25-01-09

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-30

高三数学怎么快速提高成绩 有什么技巧

24-11-22

高三数学零基础怎么补救 学习技巧有哪些

24-11-18

高二数学不好怎么补救 有哪些学习方法

24-11-18

高中数学成绩太差怎么办 怎么提高成绩

24-11-18

高中数学提分技巧 如何提高成绩

24-11-18