实数集包括什么

文/路人甲

包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。实数是不可数的,实数是实数理论的核心研究对象。

加法定理

1.1.对于任意属于集合R的元素a、b,可以定义它们的加法a+b,且a+b属于R;

1.2.加法有恒元0,且a+0=0+a=a(从而存在相反数);

1.3.加法有交换律,a+b=b+a;

1.4.加法有结合律,(a+b)+c=a+(b+c)。

乘法定理

2.1对于任意属于集合R的元素a、b,可以定义它们的乘法a·b,且a·b属于R;

2.2乘法有恒元1,且a·1=1·a=a(从而除0外存在倒数);

2.3乘法有交换律,a·b=b·a;

2.4乘法有结合律,(a·b)·c=a·(b·c);

2.5乘法对加法有分配率,即a·(b+c)=(b+c)·a=a·b+a·c。

实数

基本运算

实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

性质

封闭性

实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

性质

有序性

实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:a<b,a=b,a>b。

传递性

实数大小具有传递性,即若a>b,b>c,则有a>c。

阿基米德性

实数具有阿基米德(Archimedes)性,即对任何a,b∈R,若b>a>0,则存在正整数n,使得na>b。

稠密性

实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。

小编推荐

1.读大专选择什么专业最好 学什么最吃香

2.初中学历怎么升本科学历 有什么好处

3.强基计划为什么降分 一般能降多少分

4.文科生适合报强基计划吗 可以报什么专业

5.强基计划的学生未来去向 毕业后能干什么

6.电子信息工程好就业吗 2024找什么工作

7.重阳节为什么要插茱萸 原因是什么

8.重阳节的寓意和象征意义 有什么风俗

下载文档

猜你喜欢

高中数学技巧解题秒杀 实用解题技巧整理

24-10-29

高一数学考30分还有救吗 基础差怎么提分

24-10-29

有数学天赋的孩子特征是什么 哪些人适合学数学

24-10-28

余弦定理求三角形面积公式是什么 余弦定理性质

24-10-28

高三数学零基础快速提升的秘籍

24-10-28

高三学生数学太差该从何入手 有哪些提分技巧

24-10-28

数学提分秘籍 轻松应对高考挑战

24-10-28

学思维好还是学奥数好 应该如何选择

24-10-28