天元术的主要贡献者是李冶。李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。
李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。
金亡北渡后,流落忻崞间,常与元好问唱和,世称“元李”。晚家封龙山(今河北省元氏县)下,隐居讲学。元世祖至元初,以翰林学士召,就职期月,以老病辞归。能诗词,有《敬斋集》,今有考订之作《敬斋古今黈》40卷传世。另著有《测圆海镜》12卷(1248年)、《益古演段》3卷(1259年)、《泛说》40卷、《壁书丛削》12卷。
李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。
天元术的出现,提供了列方程的统一方法,其步骤要比阿拉伯数学家的代数学进步得多。而在欧洲,只是到了十六世纪才做到这一点。此外,宋代创立的增乘开方法又简化了求解数学高次方程正根的运算过程。因此,在这一时期,列方程和解方程都有了简单明确的方法和程式,中国古典代数学发展到了比较完备的阶段。