大数据属于计算机科学学科领域,指的是通过分析和挖掘全量的非抽样的数据辅助决策,是近年来一种新兴技术,在各行各业中都有着非常广泛的应用价值,下面小编就带领大家详细盘点一下。
大数据技术指的是无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
一是机器学习、人工智能继续成为大数据智能分析的核心技术,大数据预测和决策支持仍是主要应用。在学术上,深度分析继续扮演技术主角,推动整个大数据智能的应用。通过像神经网络模型的深度学习,让计算机自动学习产生特征的方法,并将特征学习融入建立模型的过程中,增加设计特征的完备性。深度学习将在图像分类、语音识别、问答系统等应用取得重大突破,并有望得到成功商业应用。
二是数据科学带动多学科融合。随着社会的数字化程度逐步加深,更为宽泛、更为包容大数据的边界不断完善,使得越来越多的学科在数据层面趋于一致,为类比科学研究创造了条件。“数据科学”的基础研究与成果将源源不断地注入技术研究和应用范畴中。
三是开源是主流技术,公测促良好研发生态。大数据的处理模式更加多样化,Hadoop不再成为构建大数据平台的唯一选择。随着开源项目Spark不断被大规模应用,正成为大数据领域最大的开源社区。开源系统将成为大数据领域的主流技术和系统选择,并将引领着大数据生态系统的发展。各类大数据应用公测将促进大数据技术取得突破性进展。
四是基于知识图谱的大数据应用成为热门应用场景。近年来,大数据成为大众媒体的热词,大众需要可视化的大数据,背后是基于知识图谱的大数据应用。可视化是通过把复杂的数据转化为可以交互的图形,帮助用户更好地理解分析数据对象,发现、洞察其内在规律。让对信息技术不熟悉的普通民众和非技术专业的常规决策者也能够更好地理解大数据及其分析的效果和价值,进而从国计、民生两方面都充分发挥大数据的价值。