每个阶段当然就有所不同。小学乘法难,中学多元多次方程难,高中是几何函数、导数、圆锥曲线,立体几何或是排列组合。大学积分、微分、卷积难,研究生理论都需要推导。
1,分析:包括数学分析,实变函数,泛函分析,复分析,调和分析,傅里叶分析,常微分方程,偏微分方程等;2,数论:包括初等数论,代数数论,解析数论,数的几何,丢番图逼近论,模形式等;
3,代数:初等代数,高等代数,近世(或抽象)代数,交换代数,同调代数,李代数等;
4,几何:初等几何,高等几何,解析几何,微分几何,黎曼几何,张量分析,拓扑学等;
5,应用数学:这里面的分支太多了,例如概率统计,数值分析,运筹学,排队论等。
一个正方形,有旋转90度的倍数的对称性和沿4条不同的反射轴反射的对称性,数学家把这种对称性抽象出来,构建了一种抽象的数学结构,叫做 群。正方形对应的即是8阶的二面体群。
不同的群之间有所谓的群同态(你可以理解成一种保持结构的映射),把所有的群放在一起,连同他们之间所有可能的同态,构成了一个新的结构,叫做 范畴。
群本身是一种抽象的数学结构,但数学家们却开始研究“结构的结构”,他们把一类数学结构本身作为对象,来研究这些对象构成的新的结构。这种思路也是一种非常有趣的思路,就是以抽象的事物为基石,去构造“抽象之上的更抽象”。我认为是数学、理论计算机科学、逻辑学、分析哲学独有的一种抽象思维。
范畴和范畴之间又可以定义函子,函子和函子之间可以定义自然变换,关于函子、自然变换,有一个非常有名的定理,又被认为是范畴论中第一个有实质内容的定理,即所谓的Yoneda lemma。
范畴是20世纪上半叶搞出的结构,来源于代数拓扑和同调代数;新世纪的数学,又有所谓的“无穷范畴”——比普通的范畴论在复杂度抽象性方面又高了好几个层次;限于水平,我就不胡说八道误导大家了。这个只有专门做higher algebra这一块的人可以讲清楚。但可以肯定,只有熟悉范畴论基础知识的人,才能继续学习无穷范畴。
其实也不一定非得在代数学的领域才能出现这种抽象结构。即使在微分几何这种相对具体的领域,我也可以考虑两个流形之间的光滑映射全体,这也是一个新的流形,当然是无穷维的。但是考虑他的一个子集,比如紧黎曼流形的等距映射全体,这就成了一个紧流形、紧李群。对学数学的人来说,引进这样的事物是非常自然的事情。但是对学自然科学或者实验学科的人来说,这种思维其实已经比较抽象。比如我有学物理的同学,他可以理解SO(3)是3阶正交矩阵全体,但是他很难把SO(3)当成一个抽象的群来考虑,他永远需要通过具体矩阵元的方式来理解矩阵群,而不是通过群运算群结构本身来认识一个抽象的群。大部分普通人还是需要经过系统的训练才能慢慢培养抽象的数学思维的。所以非科班的数学爱好者也不必操之过急,不要一开始就来刚 无穷范畴,先从“本科级别的抽象”来慢慢做起。
1.四川射洪中学2024高三10月月考理科数学试题及答案解析
3.四川射洪中学2024高三10月月考文科数学试题及答案解析
4.四川省江油中学2024高三10月月考理科数学试题及答案解析
5.成都树德中学2024高三10月阶段性测试理科数学试题及答案
6.成都树德中学2024高三10月阶段性测试文科数学试题及答案
8.佳木斯高中教学联合体2024高三10月月考数学试题及答案