公因数只有1的两个非零自然数,叫做互质数。如9和7,9和7都可以被1整除,但是没有另外一个数可以使9和7同时被整除,则9和7是互质数。
公因数只有1的两个非零自然数,叫做互质数。
互质的两个数并不一定都是质数,例如9和10都是合数:
9的因数有:1,3,9;
10的因数有:1,2,5,10;
9和10只有1一个公因数,因此9和10是互质数。
根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。
(1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。
(2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。
(3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。
(4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。
(5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。
(6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。
(7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。