顶点在圆心上,角的两边与圆周相交的角叫做圆心角。∠AOB的顶点O是圆O的圆心,OA、OB交圆O于A、B两点,则∠AOB是圆心角。圆心角是指在中心为O的圆中,过弧AB两端的半径构成的∠AOB,称为弧AB所对的圆心角。圆心角等于同一弧所对的圆周角的二倍。
垂径定理、圆心角、弧、弦、弦心距间的关系
1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。
2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义)
3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。