平面向量的数量积和几何意义

文/听风

一、平面向量的数量积和几何意义

1、向量的夹角

已知两个非零向量$\boldsymbol a$和$\boldsymbol b$,作$\overrightarrow{OA}=$$\boldsymbol a$,$\overrightarrow{OB}=$$\boldsymbol b$,则$∠AOB=θ$($0°\leqslant θ\leqslant 180°$)叫做向量$\boldsymbol a$与$\boldsymbol b$的夹角。

当$θ=0°$时,向量$\boldsymbol a$,$\boldsymbol b$共线且同向;

当$θ=90°$时,向量$\boldsymbol a$,$\boldsymbol b$相互垂直,记作$\boldsymbol a⊥\boldsymbol b$;

当$θ=180°$时,向量$\boldsymbol a$,$\boldsymbol b$共线且反向。

注:(1)向量的夹角是针对非零向量定义的。

(2)只有两个向量的起点重合时所对应的角才是两向量的夹角。

2、平面向量的数量积

已知两个非零向量$\boldsymbol a$与$\boldsymbol b$,我们把数量$|\boldsymbol a||\boldsymbol b|·\cos θ$叫做$\boldsymbol a$与$\boldsymbol b$的数量积(或内积),记作$\boldsymbol a·\boldsymbol b$,即$\boldsymbol a·\boldsymbol b=$$|\boldsymbol a||\boldsymbol b|·\cos θ$,其中$θ$是$\boldsymbol a$与$\boldsymbol b$的夹角。

两个向量夹角的取值范围是$[0°,180°]$,零向量与任一向量的数量积为0。

数量积的几何意义

数量积$\boldsymbol a$·$\boldsymbol b$等于$\boldsymbol a$的长度$|\boldsymbol a|$与$\boldsymbol b$在$\boldsymbol a$的方向上的投影$|\boldsymbol b|\cos θ$的乘积。

注:①投影和两个向量的数量积都是数量,不是向量。当$θ$为锐角时投影为正值;当$θ$为钝角时投影为负值;当$θ$为直角时投影为0;当$θ=0°$时投影为$|\boldsymbol b|$;当$θ=180°$时投影为$-|\boldsymbol b|$。

② $\boldsymbol b$在$\boldsymbol a$方向上的投影可以记为$|\boldsymbol b|\cos θ$,也可记为$\frac{\boldsymbol a·\boldsymbol b}{|\boldsymbol a|}$。

二、平面向量的数量积的相关例题

已知$\boldsymbol a$,$\boldsymbol b$均为单位向量,若$|\boldsymbol a-2\boldsymbol b|=\sqrt{3}$,则向量$|\boldsymbol a|$与$|\boldsymbol b|$的夹角为___

A.$\frac{π}{6}$ B.$\frac{π}{3}$ C.$\frac{2π}{3}$ D.$\frac{5π}{6}$

答案:B

解析:由$|\boldsymbol a-2\boldsymbol b|=\sqrt{3}$得$(\boldsymbol a-2\boldsymbol b)^2=3$,即$\boldsymbol a^2+$$4b^2-$$4\boldsymbol a·\boldsymbol b=$3,设单位向量$\boldsymbol a$与$\boldsymbol b$的夹角为$θ$,则有1+4-4$\cos θ$=3,解得$\cos θ=\frac{1}{2}$,又$θ∈[0,π]$,所以$θ=\frac{π}{3}$,故选B。

小编推荐

1.昭君出塞的历史意义 有哪些影响

2.洋务运动的历史作用 有哪些意义

3.戊戌维新运动的意义 失败的原因是什么

4.郑和下西洋的历史意义 有哪些影响

5.辛亥革命的历史意义 性质是什么

6.解放战争三大战役是什么 胜利的意义有哪些

7.重阳节的寓意和象征意义 有哪些习俗

8.美国独立战争的意义 爆发原因是什么

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02