复数的乘除和性质

文/微凉395

一、复数的乘除和性质

1、复数的乘法

设$z_1=a+b{\rm i},z_2=c+d{\rm i}$是任意两个复数,那么它们的积$(a+b{\rm i})(c+d{\rm i})=ac+bc{\rm i}+ad{\rm i}+bd{\rm i}^2$

$=(ac-bd)+(ad+bc){\rm i}$。

(1)两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把$i^2$换成-1,并且把实部与虚部分别合并即可。

(2)两个复数的积是一个确定的复数。

2、复数乘法的运算律

对于任意$z_1,z_2,z_3\in\mathbf{C}$,有

(1)交换律:$z_1z_2=z_2z_1$。

(2)结合律:$(z_1z_2)z_3=z_1(z_2z_3)$。

(3)分配律:$z_1(z_2+z_3)=z_1z_2+z_1z_3$。

3、复数正整数指数幂的运算

对于任意复数$z_1,z_2,z_3$和正整数$m,n$,有$z^mz^n=z^{m+n},(z^m)^n=z^{mn}$,$(z_1z_2)^n=z^n_1z^n_2$。

4、复数的除法

(1)共轭复数

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。通常记复数$z$的共轭复数为$\overline{z}$。即复数$z=a+b{\rm i}$的共轭复数$\overline{z}=a-b{\rm i}$。

(2)共轭复数的性质

若$z_1,z_2$互为共轭复数,则在复平面内,$z_1,z_2$所对应的点关于实轴对称,且$z_1z_2$为实数。

(3)复数的除法

$(a+b{\rm i})÷(c+d{\rm i})$=$\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}{\rm i}(c+d{\rm i}≠0)$。

两个复数相除(除数不为0),所得的商是一个确定的复数。

复数的除法运算的实质是分母的“实数化”。

二、复数的乘除的相关例题

若复数$z=\frac{3+4{\rm i}}{2+{\rm i}}({\rm i}$是虚数单位),则$|z|$=___

A.1 B.2 C.$\sqrt{5}$ D.5

答案:C

解析:∵复数$z=\frac{3+4{\rm i}}{2+{\rm i}}=\frac{(3+4{\rm i})(2-{\rm i})}{(2+{\rm i})(2-{\rm i})}=\frac{10+5{\rm i}}{5}=2+{\rm i}$,$∴|z|=\sqrt{2^2+1^2}=\sqrt{5}$,故选C。

小编推荐

1.辛亥革命的历史意义 性质是什么

2.美国独立战争的性质 爆发战争的原因是什么

3.菱形的对角线平分对角吗 有哪些性质

4.孩子学奥数的最佳年龄 几岁最合适

5.平行四边形面积公式 有什么性质

6.三角函数的8个诱导公式 都有哪些公式

7.孩子学奥数的最佳年龄 多少岁比较合适

8.强基计划对高考分数的要求 多少分可以报

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02