二阶偏导数公式详解 性质及公式是什么

文/歹匕亼

二阶偏导是比较难的知识点,下面是关于二阶偏导数的公式及性质等内容,让我们一起来看看吧。

二阶偏导数公式详解

∂z/∂x=[√(x²+y²)-x·2x/2√(x²+y²)]/(x²+y²)=y²/[(x²+y²)^(3/2)]

∂z/∂y=-x·2y/2√(x²+y²)^(3/2)]=-xy/[(x²+y²)^(3/2)]

∂²z/∂x²=-(3/2)y²·2x/[(x²+y²)^(5/2)]=-3xy²/[(x²+y²)^(5/2)]

∂²z/∂x∂y=[2y·[(x²+y²)^(3/2)-y²·(3/2)·[(x²+y²)^(1/2)2y]/[(x²+y²)³]

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。假如函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。

按偏导数的概念,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导办法与一元函数导数的求法是一样的。

设有二元函数z=f(x,y),点(x0,y0)是其概念域D内一点。把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

假如△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数,记作f'x(x0,y0)或函数z=f(x,y)在(x0,y0)处对x的偏导数。

把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数。同样,把x固定在x0,让y有增量△y,假如极限存在那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作f'y(x0,y0)。

二阶偏导数的性质

(1)假如一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],假如总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:假如一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

(2)判断函数极大值以及极小值。

结合一阶、二阶导数能够求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

(3)函数凹凸性。

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

1.若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;

2.若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

小编推荐

1.读大专选择什么专业最好 学什么最吃香

2.初中学历怎么升本科学历 有什么好处

3.强基计划为什么降分 一般能降多少分

4.文科生适合报强基计划吗 可以报什么专业

5.强基计划的学生未来去向 毕业后能干什么

6.电子信息工程好就业吗 2024找什么工作

7.重阳节为什么要插茱萸 原因是什么

8.重阳节的寓意和象征意义 有什么风俗

下载文档

猜你喜欢

高中数学技巧解题秒杀 实用解题技巧整理

24-10-29

高一数学考30分还有救吗 基础差怎么提分

24-10-29

有数学天赋的孩子特征是什么 哪些人适合学数学

24-10-28

余弦定理求三角形面积公式是什么 余弦定理性质

24-10-28

高三数学零基础快速提升的秘籍

24-10-28

高三学生数学太差该从何入手 有哪些提分技巧

24-10-28

数学提分秘籍 轻松应对高考挑战

24-10-28

学思维好还是学奥数好 应该如何选择

24-10-28