2022高中必背88个数学公式

文/不想他

[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

高中必背88个数学公式是什么

2 . 函数的周期性问题(记忆三个)

(1)若f(x)=-f(x+k),则T=2k;

(2)若f(x)=m/(x+k)(m不为0),则T=2k;

(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

4 . 函数奇偶性

(1)对于属于R上的奇函数有f(0)=0;

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

(3)奇偶性作用不大,一般用于选择填空

5 . 数列爆强定律

(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);

(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q

6 . 数列的终极利器,特征根方程

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),

a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7 . 函数详解补充

1、复合函数奇偶性:内偶则偶,内奇同外

2、复合函数单调性:同增异减

3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8 . 常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法

前面减去一个1,后面加一个,再整体加一个2

9 . 适用于标准方程(焦点在x轴)爆强公式

k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo

注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10 . 强烈推荐一个两直线垂直或平行的必杀技

已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0

若它们垂直:(充要条件)a1a2+b1b2=0;

若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[

这个条件为了防止两直线重合)

注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

11 . 经典中的经典

相信邻项相消大家都知道。

下面看隔项相消:

对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]

注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!

12 . 爆强△面积公式

S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)

注:这个公式可以解决已知三角形三点坐标求面积的问题

13 . 你知道吗?空间立体几何中:以下命题均错

(1)空间中不同三点确定一个平面

(2)垂直同一直线的两直线平行

(3)两组对边分别相等的四边形是平行四边形

(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面

(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱

(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥

注:对初中生不适用。

14 . 一个小知识点

所有棱长均相等的棱锥可以是三、四、五棱锥。

15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值

答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;

当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。

16 . √〔(a²+b²)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)

17 . 椭圆中焦点三角形面积公式

S=b²tan(A/2)在双曲线中:S=b²/tan(A/2)

说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。

18 . 爆强定理

空间向量三公式解决所有题目:cosA=|{向量a.向量b}/[向量a的模×向量b的模]

(1)A为线线夹角

(2)A为线面夹角(但是公式中cos换成sin)

(3)A为面面夹角注:以上角范围均为[0,派/2]。

19 . 爆强公式

1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+1)²

20 . 爆强切线方程记忆方法

写成对称形式,换一个x,换一个y

举例说明:对于y²=2px可以写成y×y=px+px

再把(xo,yo)带入其中一个得:y×yo=pxo+px

21 . 爆强定理

(a+b+c)²n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上

22 . 转化思想

切线长l=√(d²-r²)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

23 . 对于y²=2px

过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。

爆强定理的证明:对于y²=2px,设过焦点的弦倾斜角为A

那么弦长可表示为2p/〔(sinA)²〕,所以与之垂直的弦长为2p/[(cosA)²]

所以求和再据三角知识可知。

(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)

24 . 关于一个重要绝对值不等式的介绍爆强

∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣

25 . 关于解决证明含ln的不等式的一种思路

举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)

把左边看成是1/n求和,右边看成是Sn。

解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,

那么只需证an>bn即可,根据定积分知识画出y=1/x的图。

an=1×1/n=矩形面积>曲线下面积=bn。当然前面要证明1>ln2。

注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。说明:前提是含ln。

26 . 爆强简洁公式

向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。

记忆方法:在哪投影除以哪个的模

27 . 说明一个易错点

若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕

同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a) 牢记

28 . 离心率爆强公式

e=sinA/(sinM+sinN)

注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N

29 . 椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。

比如x²/4+y²=1求z=x+y的最值。

解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!

30 . 仅供有能力的童鞋参考的爆强公式

和差化积

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

积化和差

sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2

31 . 爆强定理

直观图的面积是原图的√2/4倍。

32 . 三角形垂心爆强定理

(1)向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)

(2)若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

33 . 维维安尼定理(不是很重要(仅供娱乐))

正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。

34 . 爆强思路

如果出现两根之积x1x2=m,两根之和x1+x2=n

我们应当形成一种思路,那就是返回去构造一个二次函数

再利用△大于等于0,可以得到m、n范围。

35 . 常用结论

过(2p,0)的直线交抛物线y²=2px于A、B两点。

O为原点,连接AO.BO。必有角AOB=90度

36 . 爆强公式

ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。

举例说明:ln(1/(2²)+1)+ln(1/(3²)+1)+…+ln(1/(n²)+1)<1(n≥2)

证明如下:令x=1/(n²),根据ln(x+1)≤x有左右累和右边

再放缩得:左和<1-1/n<1证毕!

37 . 函数y=(sinx)/x是偶函数

在(0,派)上它单调递减,(-派,0)上单调递增。

利用上述性质可以比较大小。

38 . 函数

y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。

另外y=x²(1/x)与该函数的单调性一致。

39 . 几个数学易错点

(1)f`(x)<0是函数在定义域内单调递减的充分不必要条件

(2)研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称

(3)不等式的运用过程中,千万要考虑"="号是否取到

(4)研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!

40 . 提高计算能力五步曲

(1)扔掉计算器

(2)仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用

(3)熟记常用数据,掌握一些速算技

(4)加强心算、估算能力

(5)检验

41 . 一个美妙的公式

已知三角形中AB=a,AC=b,O为三角形的外心,

则向量AO×向量BC(即数量积)=(1/2)[b²-a²]

证明:过O作BC垂线,转化到已知边上

42 . 函数

①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了为什么不能说y=tanx在定义域内单调递增,因为它的图像被无穷多条渐近线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y与x一一对应.这个可以用来解一些方程.至于例子不举了

②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R上的函数,对任意x∈R

(1)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)

(2)f(a±x)=-f(b±x)T=2(b-a)

(3)f(x-a)+f(x+a)=f(x)T=6a

(4)设T≠0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)≠x则函数的周期为2

43 . 奇偶函数概念的推广

(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)

(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)

(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1)<f(x2)等价于绝对值x1-(a+b p="" <="" 2)<绝对值x2-(a+b)="">

44 . 函数对称性

(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称

(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称

柯西函数方程:若f(x)连续或单调

(1)若f(xy)=f(x)+f(y)(x>0,y>0),则f(x)=㏒ax

(2)若f(xy)=f(x)f(y)(x>0,y>0),则f(x)=x²u(u由初值给出)

(3)f(x+y)=f(x)f(y)则f(x)=a²x

(4)若f(x+y)=f(x)+f(y)+kxy,则f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),则f(x)=ax+b特别的若f(x)+f(y)=f(x+y),则f(x)=kx

45 . 与三角形有关的定理或结论中学数学平面几何最基本的图形就是三角形

①正切定理(我自己取的,因为不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC

②任意三角形射影定理(又称第一余弦定理):

在△ABC中,

a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA

③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道了吧

④梅涅劳斯定理:设A1,B1,C1分别是△ABC三边BC,CA,AB所在直线的上的点,则A1,B1,C1共线的充要条件是CB1/B1A·BA1/A1C·AC1/C1B=1

44 . 易错点

(1)函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决抽象函数不等式问题;

(2)三角函数恒等变换不清楚,诱导公式不迅捷。

45 . 易错点

(3)忽略三角函数中的有界性,三角形中角度的限定,比如一个三角形中,不可能同时出现两个角的正切值为负

(4)三角的平移变换不清晰,说明:由y=sinx变成y=sinwx的步骤是将横坐标变成原来的1/∣w∣倍

46 . 易错点

(5)数列求和中,常常使用的错位相减总是粗心算错

规避方法:在写第二步时,提出公差,括号内等比数列求和,最后除掉系数;

(6)数列中常用变形公式不清楚,如:an=1/[n(n+2)]的求和保留四项

47 . 易错点

(7)数列未考虑a1是否符合根据sn-sn-1求得的通项公式;

(8)数列并不是简单的全体实数函数,即注意求导研究数列的最值问题过程中是否取到问题

48 . 易错点

(9)向量的运算不完全等价于代数运算;

(10)在求向量的模运算过程中平方之后,忘记开方。

比如这种选择题中常常出现2,√2的答案…,基本就是选√2,选2的就是因为没有开方;

(11)复数的几何意义不清晰

49 . 关于辅助角公式

asint+bcost=[√(a²+b²)]sin(t+m)其中tanm=b/a[条件:a>0]

说明:一些的同学习惯去考虑sinm或者cosm来确定m,个人觉得这样太容易出错

最好的方法是根据tanm确定m.(见上)。

举例说明:sinx+√3cosx=2sin(x+m),

因为tanm=√3,所以m=60度,所以原式=2sin(x+60度)

50 . A、B为椭圆x²/a²+y²/b²=1上任意两点。若OA垂直OB,则有1/∣OA∣²+1/∣OB∣²=1/a²+1/b²

高中数学常用公式记忆口诀

《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

《数列》

等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

五、《复数》

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与x轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

七、《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

八、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

小编推荐

1.2025青岛新东方高中寒假班招生

2.太原新东方高中寒假班课程怎么样

3.成都美博教育高中一对一课程怎么样

4.新加坡高中留学条件 费用大概是多少

5.湖南九校联盟2025届高三第一次数学试题及答案解析

6.去新加坡上高中一年多少钱 有哪些优缺点

7.成都高中补课机构排名榜最新

8.西安高中一对一补课机构排名前十名单

下载文档

猜你喜欢

如何提高高中数学成绩 学习方法技巧有哪些

24-12-03

高三数学20分怎么补 学习方法有哪些

24-11-30

高三数学怎么快速提高成绩 有什么技巧

24-11-22

高三数学零基础怎么补救 学习技巧有哪些

24-11-18

高二数学不好怎么补救 有哪些学习方法

24-11-18

高中数学成绩太差怎么办 怎么提高成绩

24-11-18

高中数学提分技巧 如何提高成绩

24-11-18

高中数学怎么提分 高效学习方法有哪些

24-11-18