两个三角形全等的条件:三条边对应相等;两条边和它们的夹角对应相等;两角及其一角的对边对应相等;两个角和它们的夹边对应相等;直角三角形中,斜边及另一条直角边相等。
全等三角形判定
五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。
SSS(边边边):三边对应相等的三角形是全等三角形。
SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(角边角):两角及其夹边对应相等的三角形全等。
AAS(角角边):两角及其一角的对边对应相等的三角形全等。
RHS(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。(它的证明是用SSS原理)
全等三角形的性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3. 能够完全重合的顶点叫对应顶点
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
2.北京交通大学SQA3+1国际本科项目2024级春季补录申请条件