交集的定义和性质

文/北京时间

一、交集的定义和性质

1、交集的定义:一般地,由属于集合$A$且属于集合$B$的所有元素组成的集合,称为$A$与$B$的交集,记作$A∩B$(读作“$A$交$B$”),即$A∩B={x|x∈A$且$x∈B}$。

2、交集的性质:

① $A∩B=B∩A$,$A∩A=A$,$A∩\varnothing=\varnothing。$

② 若$A∩B=A$,则$A\subseteq B。$

③$(A∩B)∩C=A∩(B∩C)。$

3、交集的运算

(1)若两个集合$A$和$B$的交集为空,则说它们没有公共元素,写作:$A∩B=\varnothing$。例如集合${1,2}$ 和${3,4}$ 不相交,写作${1,2} ∩{3,4}=\varnothing$。

(2)任何集合与空集的交集都是空集,即$A∩\varnothing=\varnothing$。

(3)交集运算可以对多个集合同时进行。例如,集合$A、B、C$和$D$的交集为$A∩B∩C∩D=A∩[B∩(C∩D)]$。交集运算满足结合律,即$A∩(B∩C)=(A∩B)∩C$。

二、交集的相关例题

已知集合$A={x∈\mathbf{Z}|x^2-4x-5<0}$,$B={x|4^x>2^m}$,若$A∩B$有三个元素,则实数$m$的取值范围是

A.$[3,6)$ B.$[1,2)$

C.$[2,4)$ D.$(2,4]$

答案:C

解析:集合$A={x∈{\mathbf{Z}}|x^2-4x-5<0}=$${0,1,2,3,4}$,$B={x|4^x>2^m}={x|x>\frac{m}{2}}$,$∵A∩B$有三个元素,∴$1≤\frac{m}{2}<2$,解得$2≤m<4$,∴实数$m$的取值范围是$[2,4)$,故选C。

小编推荐

1.辛亥革命的历史意义 性质是什么

2.美国独立战争的性质 爆发战争的原因是什么

3.菱形的对角线平分对角吗 有哪些性质

4.重阳节的意义和风俗 有哪些传统活动

5.平行四边形面积公式 有什么性质

6.人民代表大会的性质和地位

7.导数的定义式

8.五四运动的性质是什么 有哪些历史意义

下载文档

猜你喜欢

2024私立国际本科大学有哪些 读完有用吗

24-11-06

2024办理留学中介机构有哪些 要多少钱

24-11-06

2024对外贸易大学国际本科咋样 含金量高吗

24-11-06

2024国际本科什么意思 一年的费用多少

24-11-06

2024北京石油国际本科值得读吗 有什么优势

24-11-06

2024浙江国际本科含金量高吗 读完好就业吗

24-11-06

2024山东财经大学国际本科靠谱吗 是正规的吗

24-11-06

2024美国国际本科有什么大学可以读 值得去吗

24-11-06