一、集合的包含关系和集合相等
1、子集:一般地,对于两个集合$A,B$,如果集合$A$中任意一个元素都是集合$B$中的元素,我们就说这两个集合有包含关系,称集合$A$为集合$B$的子集,记作$A\subseteq B$(或$B\supseteq A$),读作“$A$含于$B$”(或“$B$包含$A$”)。
2、真子集:如果集合$A\subseteq B$,但存在元素$x∈B$,且$x\notin A$,称集合$A$是集合$B$的真子集,记作$A\subsetneqq B$(或$B\supsetneqq A$)。
3、空集:不含任何元素的集合叫空集,记为$\varnothing$。空集是任何集合的子集,任何一个集合是它本身的子集,空集是任何非空集合的真子集。
4、集合相等:如果集合$A$是集合$B$的子集($A\subseteq B$),且集合$B$是集合$A$的子集$(B\subseteq A)$,此时,集合$A$与集合$B$中的元素是一样的,因此,集合$A$与集合$B$相等,记作$A=B$。
5、集合子集的个数
(1)若集合$A$中有$n$个元素,则集合$A$有$2^n$个子集,$2^n-1$个真子集,$2^n-1$个非空子集,$2^n-2$个非空真子集。
(2)若集合$A$含有$n(n≥1)$个元素,集合$C$含有$m(m≥1)$个元素$(m≥n)$,且$A\subseteq B\subseteq C$,则符合条件的集合$B$有$2^{m-n}$个。
二、集合的包含关系的相关例题
下列命题:
① 空集没有子集;② 任何集合至少有两个子集;③ 空集是任何集合的真子集;④ 若$\varnothing\subsetneqq A$ ,则$A≠\varnothing$。其中正确的个数是___
A.0 B.1 C.2 D.3
答案:B
解析:在①中,空集的子集是空集,故①错误;在②中,空集只有唯一一个子集,还是空集,故②错误;在③中,空集是任何非空集合的真子集,故③错误;在④中,若$\varnothing\subsetneqq A$ ,则$A≠\varnothing$,故④正确。故选B。