平均数的定义和特点

文/刘莉莉

一、平均数的定义和特点

1、平均数

一般地,对于$n$个数$x_1$,$x_2$,$\cdots$,$x_n$,我们把$\frac{1}{n}(x_1+x_2+\cdots+x_n)$叫做这$n$个数的算术平均数,简称平均数,记作“$\overline{x}$”,读作“$x$拔”。

2、算术平均数的特点

(1)平均数、数的个数以及所有数的总和这三个量中,已知任意两个就能求出第三个,平均数=$\displaystyle{}\frac{所有数的总和}{数的个数}$。

(2)平均数是描述一组数据的一种常用指标。一组数据的平均数只有一个。

(3)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会引起平均数的变动。平均数容易受个别极端值影响。

(4)若数据$x_1$,$x_2$,$\cdots$,$x_n$的平均数为$\overline{x}$,则$x_1±a$,$x_2±a$,$\cdots$,$$x_n±a$$的平均数为$\overline{x}±a$;$kx_1$,$kx_2$,$\cdots$,$kx_n$的平均数为$k\overline{x}$($a$,$k$为常数)。(5)总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数,通常用样本平均数去估计总体平均数。

3、加权平均数

当一组数据中有数据重复出现时,如在$n$个数据中,$x_1$出现$f_1$次,$x_2$出现$f_2$次,$\cdots$,$x_k$出现$f_k$次(这里$f_1+f_2+\cdots+f_k=n$),那么这$n$个数据的平均数可表示为$\frac{x_1f_1+x_2f_2+\cdots+x_kf_k}{n}$,这个平均数也叫做加权平均数,其中$f_1$,$f_2$,$\cdots$,$f_k$分别叫做$x_1$,$x_2$,$\cdots$,$x_k$的权。或者,若$n$个数$x_1$,$x_2$,$\cdots$,$x_n$的权分别是$w_1$,$w_2$,$\cdots$,$w_n$,则$\frac{x_1w_1+x_2w_2+\cdots+x_nw_n}{w_1+w_2+\cdots+w_n}$叫做这$n$个数的加权平均数。

4、加权平均数的特点

(1)加权平均数实际上是算术平均数的另一种表现形式。

(2)若各个数据的权相同,则加权平均数就是算术平均数,因而可以看出算术平均数实质上是加权平均数的一种特例。

(3)算术平均数是用一组数据的和除以数据的个数来计算的;加权平均数在计算上与算术平均数有所不同,是因为在实际问题中数据的“重要程度”未必相同,即各个数据的“权”未必相同。

二、平均数的相关例题

已知一组数据为:10,8,10,12,10,其中中位数、平均数和众数的大小关系是___

A.众数=中位数=平均数

B.中位数<众数<平均数

C.平均数>中位数>众数

D.平均数<中位数<众数

答案:A

解析:(10+8+10+12+10)÷5=50÷5=10,这组数据的平均数是10;把这组数据从大到小排列如下:8,10,10,10,12,这组数据的中位数是10;这组数据中10出现次数最多, 10是这组数据的众数;即众数=中位数=平均数。故选A。

小编推荐

1.贾宝玉的人物形象分析 性格特点是怎样的

2.红楼梦贾宝玉人物分析 性格特点是什么

3.今年应届生平均招聘月薪10342元 你到平均值了吗

4.今年应届生平均招聘月薪10342元 具体怎么回事

5.封建社会什么时候开始和结束 有哪些特点

6.贾宝玉的人物形象分析 有哪些性格特点

7.2023年应届生平均招聘月薪10342元 什么专业工资高

8.孩子学奥数的最佳年龄 几岁最合适

下载文档

猜你喜欢

太原专业的高三艺考文化课补习机构人气排名

24-11-02

菏泽单招综评集训多少钱

24-11-02

西安研途考研怎么样?好不好

24-11-02

2025年春季韩国西江大学经营学中韩双语授课硕士申请指南

24-11-02

西安学为贵雅思收费标准一览

24-11-02

2024上海外国语大学2+2项目昆士兰科技大学学费多少

24-11-02

高三后去韩国留学需要哪些条件?有哪些申请途径?

24-11-02

西安秦学伊顿教育收费标准

24-11-02